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experimental results of Hall, Hanson, and Jamnik16 

seem to provide further justification for our treatment 
of the normalization factors (as well as Deck's treat­
ment). In any case a rigorous theoretical justification 
would involve knowledge of the terms which have been 
neglected. Failing this, the treatment of the normaliza­
tion factors seems to be somewhat arbitrary. Because 

16 H. E. Hall, A. O. Hanson, and D. Jamnik, Phys. Rev. 129, 
2207 (1963). 

THE simplicity of the Fermi-Thomas approxima­
tion of the particle density for a fermion system 

in the ground state, which in the past has found its 
principal application to the atom, has led a number of 
investigators to develop procedures for systematically 
improving upon it ; presumably approaching, when in­
dependent particles are assumed, the accurate but 
difficult to compute self-consistent field result from 
wave mechanics. The formalisms of Kompaneets and 
Pavlovskii,1 Kirzhnits,2 Golden,3 and Bar aft and Boro-
witz4 lead to a common expression (for independent 
particles), a power series in #, whose first term is the 
Fermi-Thomas density. Alfred5 has given a modifica­
tion of Golden's method involving a Bromwich integral. 

I t is the purpose of this article to examine this series 
in h through an example, namely, the one-dimensional 
case for which the potential energy is a linear function 
of the displacement, i.e., 

V=ax. (1) 

A comparison with the exact analytical expression from 
wave mechanics indicates that it is only an asymptotic 
expansion, valid where the particle density is large, and 

1 A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksperim. i Teor. 
Fiz. 31, 427 (1956) [translation: Soviet Phys.—JETP 4, 328 
(1957)]. 

2 D . A. Kirzhnits, Zh. Eksperim. i Teor. Fiz. 32, 115 (1957) 
[translation: Soviet Phys.—JETP 5, 64 (1957)]. 

3 S . Golden, Phys. Rev. 105, 604 (1957); 107, 1283 (1957). 
4 G. A. Baraff and S. Borowitz, Phys. Rev. 121, 1704 (1961). 
6 L . C. R. Alfred, Phys. Rev. 121, 1275 (1961). 

of the discrepancy at high energies for lead and the 
arbitrary treatment of the normalization factors one 
of the authors (C.O.C.) has undertaken an exact calcu­
lation of single quantum annihilation. 
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that, even there, important terms of an oscillatory 
nature are missing. The apparent source of error is 
brought out in the chosen method, basically that of 
Alfred, for developing the series. 

Stephen and Zalewski6 have reached similar con­
clusions after a study of a simple harmonic oscillator 
system. However, it is believed that the use of the 
linear potential permits a much simpler and more 
comprehensible analysis. 

For a one-dimensional system of independent ferm-
ions in the ground state one may write 

JV 

p(e; x',x)= Z fn*(x')fn(p) 

= £^*(«')/(«,fl)^.(*), (2) 
n«=l 

where H= — (fi2/2tn)d2/dx2+V(x), \pn(x) is the normal­
ized eigenfunction of H corresponding to the eigen­
value E(n), which is less than E(n+1), and E(N)<e 
<E(iV r +l) . The operator f(e,H) has the property 

/ ( € , £ 0 M * ) = *»(*) for £ ( » ) < € 
= 0 for E(n)>e. 

I t can be shown7 that the form of the right side of 
Eq. (2) is invariant with respect to an orthogonal 

6 M. J. Stephen and K. Zalewski, Proc. Roy. Soc. (London) 
A270, 435 (1962). 

7 J. E. Mayer and W. Band, J. Chem. Phys. 15, 141 (1947). 
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The scheme of correcting the Fermi-Thomas particle density formula by a power series in h, procedures for 
which have been proposed by a number of authors, is examined through its application to a one-dimensional 
linear potential, which yields an analytical expression for the exact wave mechanical density for comparison. 
It is concluded that this is an asymptotic series, valid only where the particle density is large. Furthermore, 
terms of an oscillatory nature, which may very well transcend the so-called quantum corrections, are missing. 
A reason for this is offered. 
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transformation in Hilbert space, i.e., upon defining 

oo 1 f*+ico clz 

p(e; * » = £ *»*(*')/(*,#)*»(*), f(e,H)^— / - ^ C - * > , (5) 
n==1 27ri J v-ioo z 

where the <j>n constitute a second complete ortho- where 
normal system satisfying the same boundary conditions w (— \)mzm 

as the ypn. Assuming the eigenfunctions of the mo- e~zH^ X) Hm. 
mentum can serve as the $„, such that m~ m]-

/

+00 Taking the partial derivative of both sides of Eq. (4) 

gn(p) exp(ipx/fi)dp, with respect to z and observing the effect of the opera-
-oo tion of H upon the right side reveal 

gives for the particle density ^ {f. ^ ^ ^ ^ 2 

p(e,x)^p(e; x,x) T= Vr~^)+7~ TMV"^) ' 
dz m \dx / 2mLax2 \ax / J 

= hrl I exp(-ipx/h)f(e,H) exp(tpx/fi)dp. (3) The solution that satisfies the condition v -> 0 as z - » 0 
J~oc j s 

For the potential of Eq. (1) let v= — {ifia/2m)pz2J\-^ixzz, (6) 

e x p ( - s # ) exp(ipx/h) w n e r e fji=¥a2/2Am. 
= exp(ipx/fi) exp[— ((p2/2m)+ax)z+v(zJp,x)'], (4) Combining Eqs. (3), (4), (5), and (6) gives 

Ap(e,*0 = — - / dpi —exp ( e—ax jz z 2 +4/*3 8 

2iriJ-a0 J <x-ioo % L \ 2m/ 2w J 

1 r+°° r ^ y f / £ 2 \ 
= - / dp — sm — y )+ism[(e-ax)3;-/x3/3](cos(2++cosQ_) 

7r7_oo JO y I \2m / 

1 /*+°° ^ /-00 dy 

o ? 

- J cos[(e-ax)y-iJLf](smQ++sinQJ) 

where Q±= (pzL^fiay)2y/2m. An inversion in the order I t is not evident that hp, which is analytic in h 
of integration may be justified on the basis of the everywhere else on the real axis, is so for &=0. If, for 
Moore-Osgood theorem. The integration over p leaves the moment, one assumes that it is and that Eq. (8) 

/m\1/2 r00 dv *s v a n d there, the Taylor expansion in fi becomes 
hp(e,x) = [~) / — { l - c o s [ ( e - a x ) y - i u y 3 ] 

>TT7 JQ y3/2 d3PQ M2 d6Po 

+ s m [ ( e - a * ) y - W
3 ] } . (7) P = P°+^+^^7+'*'' 

, / ^ / P , P l y i n | C a ^ y , S t h e o r T +
t 0 t ? e exJfn

ession f o r where Po, the Fermi-Thomas density, is given by Eq. 
dhp/dfjL from Eq. (7) one may obtain for y^O m f = 0 

d&p <93Ap /2m\l2 r p0=t(8tn/h2)(e-ax)J12. 
= = — ( — J / r3/2 exp[J(e—ax)r—/xr3] 

d/z de3 \ ir / J o Thus, one obtains 

X c o s r ^ ( € _ ^ ) f _ ^ l ^ j p(6,^) = [ (8m/^ ) (6 - (zx ) ] 1 / 2 Cl+(^V64m(6-ax ) 3 ) 
L 2 3 J _ (105^V/8192m 2 (e-ax) 6 )+ • • • ] , (9) 

which is differentiable to all orders in /x and e. Thus, as the proposed series stipulates for the linear potential. 
one may show that In determining the exact wave-mechanical expression 

dnh dZnh *o r p( e>x)> o n e *s P e r m r t t e d t o substitute in Eq. (2) an 
for fi^Q (g) integration over n for the summation over states since 

dfxn de*n ' E(n+l)-E(n)->Q&$drV/dxr-+0,forr=2)3,4:> «••. 
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With the boundary condition \f/n(x) —»0 as x —» <», it 
may be shown that8 

7rp(e,#) = P(e,x)-\-S(e,x)[l — cosK(e,x)~] 
+R(e,x) smK(e,x), (10) 

where P is the solution of the equation 

/ 1 \/d2P\ / l dP\2 2m /3ma \ 2 ' 3 

p2+( — )[ — H ( ) —(e-«)s( u) 
\2P/\dx2/ \P dx/ ¥ \fi2/ 

conforming to 

P^(3mau/¥)1/s(l+5/72u2 ) , 

for large u, 

K(e,x) = 2f« P(e,x')dx', R= - (dK/de)~ldP/de, 

and 

S=-(dK/de)~ldR/de. 

One finds 

P = (d/dx) t a n - H C / i W + / - i W ] / 
v S [ / » ( « ) - / - i ( « ) ] } , (11) 

where Js is the Bessel function of order s. 
Letting pa represent the nonoscillatory portion of 

the particle density, i.e., Tpa=P+S, one obtains8 

dPa dP d f /dKy1 d r/^Ky1 dP~] 1 m 

T de de de\\de/ deWdeJ deJ) ti2P* 

or, upon application of Eq. (11), 

dPa/de= (tnau^ti2)11* 

X[/j2(«)-/i(«)/-»(«)+/-»2(«)]. 

Integrating both sides of this equation with respect to 
e after employing the asymptotic expansion of Js(u) 

8 H. Payne, J. Chem. Phys. 38, 2016 (1963). 

in terms of u~l gives 

pa^l(Sm/h2) (e- ax)J'2[l + (¥a2/6Am(e- axf) 

- (105¥aA/S192m2(e-axY)+ • • • ] • 

Since asymptotic expansions can be multiplied and 
integrated unconditionally, this expression, which is 
apparently identical to that of relation (9), constitutes 
such an expansion. 

Letting pb represent the oscillatory part of the 
particle density according to Eq. (10), i.e., wpb=R sinX" 
— S cosK, one finds 

pb^<— (a/47r(e—ax)) 

X { [ 1 - (1225fi2a2/230^m(e-axy)+ • • • ] cos2^ 
+ (tia/24:(2tn)ll2(e-ax)V2) 

X [ 1 7 - (19911S¥a2/6912m(e-axY)+ • • • ] sin2^} . 

I t should be noted that in the region where e— ax is 
large, these terms may very well transcend those beyond 
the first in relation (9), the quantum corrections. 

I t is seen that, as u is proportional to /T"1, fi=0 is a 
singularity of hpb due to the sine and cosine. Since it 
may be verified that Eqs. (7) and (10) are in agreement, 
the premise upon which Eq. (9) depends—that kp, as 
given by Eq. (7), is analytic in h at fi=0—is false. 

In the application of the quantum corrected statisti­
cal model to the atom, Golden's results for C+4" and O 
do not display the wavelike features of the correspond­
ing results from self-consistent field calculations. 

For a physical quantity, such as the total energy of 
a system, which is represented by the integral of a 
product of the particle density over the space occupied 
by the system, the use of the usual quantum correc­
tions may indeed give a marked improvement in the 
computed value, as has been reported for the total 
energy of the atom. The effect of the oscillatory terms 
tends to vanish through integration, while the con­
tribution from the region where the particle density is 
small may be unimportant. 


